Forskning > Industri > Food > Anvendelse: Poultry


Almindelige navne for Hypochlorsyre løsninger


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Resultater: 20 Publicerede artikler


Journal Cover

Microbe(s): Staphylococcus aureus


Slightly acidic electrolyzed water (SAEW), considered as a broad-spectrum and high-performance bactericide are increasingly applied in the food industry. However, its disinfection mechanism has not been completely elucidated. This study aims to examine the disinfection efficacy and mechanism of SAEW on Staphylococcus aureus, compared with that of sodium hypochlorite (NaClO) and hydrochloric acid (HCl). SAEW treatment significantly reduced S. aureus by 5.8 log CFU/mL in 1 min, while 3.26 and 2.73 log reductions were obtained with NaClO and HCl treatments, respectively. A series of biological changes including intracellular potassium leakage, TTC-dehydrogenase relative activity and bacterial ultrastructure destruction were studied following disinfection treatment of S. aureus. The results showed that SAEW decreased the relative activity of TTC-dehydrogenase by 65.84%. Comparing intracellular potassium leakage, the SAEW treatment caused a greater percent of protein leakage (108.34%) than the NaClO (18.75%) or HCl (0.84%) treatments. These results demonstrated the potent impact SAEW had on the permeability of cell membranes. In addition, the ranking of partly agglutinated cellular inclusion formation was HCl > SAEW > NaClO. It appeared that HCl, along with its low pH value, are responsible for most of the cytoplasmic disruptions. Overall, this study demonstrated that the disinfection mechanism of SAEW was disrupting the permeability of cell membrane and the cytoplasmic ultrastructures in S. aureus cells.



Journal Cover

Microbe(s): Escherichia coli, Salmonella enteritidis, Staphylococcus aureus


The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efciency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m2, respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative for reducing microbial contamination on surfaces in layer houses.



Journal Cover

Microbe(s): Salmonella Enteritidis


In order to reduce the risk of enteric pathogens transmission in animal farms, the disinfection effectiveness of slightly acidic electrolyzed water (SAEW, pH 5.85 to 6.53) for inactivating Salmonella Enteritidis on the surface of plastic poultry transport cages was evaluated. The coupled effects of the tap water cleaning time (5 to 15 s), SAEW treatment time (20 to 40 s), and available chlorine concentrations (ACCs) of 30 to 70 mg/l on the reductions of S. Enteritidis on chick cages were investigated using a central composite design of the response surface methodology (RSM). The established RS model had a goodness of fit quantified by the parameter R2 (0.971), as well as a lack of fit test (P > 0.05). The maximum reduction of 3.12 log10 CFU/cm2 for S. Enteritidis was obtained for the cage treated with tap water cleaning for 15 s followed by SAEW treatment for 40 s at an ACC of 50 mg/l. Results indicate that the established RS model has shown the potential of SAEW in disinfection of bacteria on cages.



Journal Cover

Microbe(s): MNV-1, Norovirus, HAV, Hepatitis A


The ability of acidic electrolyzed oxidizing water (AEO) and neutral electrolyzed oxidizing water (NEO) to inactivate the murine norovirus (MNV-1) surrogate for human norovirus and hepatitis A virus (HAV) in suspension and on stainless steel coupons in the presence of organic matter was investigated. Viruses containing tryptone (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) were mixed with AEO and NEO for 1 min. In addition, stainless steel coupons containing MNV-1 with or without organic matter were treated with AEO or NEO for 3, 5, and 10 min. AEO was proven effective and generally killed more MNV-1 and HAV in suspension than NEO. Depending on the EO water generator, free chlorine concentrations are required to inactivate MNV-1 and HAV by 3-log PFU/mL or greater ranged from 30 mg/L to 40 mg/L after a 1 min contact time. The virucidal effect increased with increasing free chlorine concentration and decreased with increasing tryptone concentration in suspension. Both AEO and NEO at 70100 mg/L of free chlorine concentration significantly reduced MNV-1 on coupons in the absence of organic matter. However, there was no significant difference between these two treatments in the presence of organic matter. In addition, the efficacy of these two EO waters on stainless steel coupons increased with the increasing treatment time. Results indicated that AEO and NEO can reduce MNV-1 and HAV in suspension. However, higher free chlorine concentrations and longer treatment times may be necessary to reduce viruses on contact surfaces or in the presence of organic matter.



Journal Cover

Microbe(s): Escherichia coli O157:H7 Salmonella Typhimurium, Listeria monocytogenes


The bactericidal efficacy of acidic electrolyzed oxidizing water (AC-EW) (pH = 2.30, free chlorine = 38 ppm) and sterile distilled water (DW) on three pathogens (Escherichia coli O157:H7 Salmonella Typhimurium, and Listeria monocytogenes) inoculated on raw trout skin, chicken legs and beef meat surfaces was evaluated. The decontaminating effect of AC-EW and DW was tested for 0 (control), 1, 3, 5 and 10 min at 22 C. AC-EW significantly (P < 0.05) reduced the three pathogens in the inoculated samples compared to the control and DW. The level of reduction ranged between ca.1.5 1.6 logs for E. coli O157:H7 and S. Typhimurium in the inoculated foods. However, AC-EW exhibited less bactericidal effect against L. monocytogenes (1.1 1.3 logs reduction). AC-EW elicited about 1.6 2.0 log reduction in the total mesophilic count. Similar treatment with DW reduced pathogens load by ca. 0.2 1.0 log reduction and total mesophiles by ca. 0.5 0.7 logs. No complete elimination of the three pathogens was obtained using AC-EW possibly because of the level of organic matter and blood moving from food samples to the AC-EW solution. This study demonstrates that AC-EW could considerably reduce common foodborne pathogens in fish, chicken and beef products.



Journal Cover

Microbe(s): Campylobacter


This study investigated the effectiveness of spraying electrolysed water for reducing the numbers of Campylobacter on chicken carcasses. Previous studies have used solutions with free chlorine concentrations above 25 ppm and low pH to treat inoculated carcasses. The four trials described here were carried out at process plants treating naturally contaminated, hot, birds with electrolysed sodium chloride or sodium carbonate solutions, plain water, or no water. The birds were chilled after treatment. Free chlorine concentrations were all below 20 ppm, pH was 7 units or more, and redox potentials were below 830 mV. None of the treatments produced more than a 0.3-log reduction in Campylobacter numbers compared to counts on untreated carcasses. This study concludes that, at the low chlorine concentrations allowed in the EU, spraying with electrolysed water is not an effective method of reducing the number or prevalence of Campylobacter on chicken carcasses.



Journal Cover

Microbe(s): Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli


Salmonella spp. may be found in the nest box of breeder chickens, cold egg-storage rooms at the farm, on the hatchery truck, or in the hatchery environment (5). These bacteria may then be spread to fertilized hatching eggs on the shell or, in some cases, may penetrate the shell and reside just beneath the surface of the eggshell.Research has demonstrated that contamination of raw poultry products with Salmonella spp. may be attributable to cross-contamination in the hatchery from Salmonella infected eggs or surfaces to uninfected baby chicks during the hatching process. Cox et al. (6 and 7) reported that broiler and breeder hatcheries were highly contaminated with Salmonella spp. Within the broiler hatchery, 71 percent of eggshell fragments, 80 percent of chick conveyor belts swabs, and 74 percent of pad samples placed under newly hatched chicks contained Salmonella spp. (6).Cason et al. (4) reported that, although fertile hatching eggs were contaminated with high levels of Salmonella typhimurium, they were still able to hatch. The authors stated that paratyphoid salmonellae do not caadverse health affects to the developing and hatching chick. During the hatching process, Salmonella spp. is readily spread throughout the hatching cabinet due to rapid air movement by circulation fans. When eggs were inoculated with a marker strain of Salmonella during hatching, greater than 80 percent of the chicks in the trays above and below the inoculated eggs were contaminated (4). In an earlier study, Cason et al. (3) demonstrated that salmonellae on the exterior of eggs or in eggshell membranes could be transmitted to baby chicks during pipping.Salmonella may persist in hatchery environments for long periods of time. When chick fluff contaminated with Salmonella was held for 4 years at room temperature, up to 1,000,000 Salmonella cells per gram could be recovered from these samples (12).Researchers have demonstrated a link between cross-contamination in the hatchery and contaminated carcasses during processing. Goren et al. (8) isolated salmonellae from three different commercial hatcheries in Europe and reported that the same serotypes found in the hatcheries could be found on processed broiler chicken carcass skin. Proper disinfection of the hatchery environment and fertile hatching eggs, therefore, is essential for reducing Salmonella on ready-to-cook carcasses.



Journal Cover

Microbe(s): Listeria monocytogenes, Salmonella Typhimurium


Anticmicrobial effect of slightly acidic low concentration electrolyzed water (SlALcEW) and strong acidic electrolyzed water (StAEW) on fresh chicken breast meat was evaluated in this study. Meat samples each of 10 0.2 g in weight and 2.5 2.5 cm2 in size were experimentally inoculated with Listeria monocytogenes (ATCC 19115) and Salmonella Typhimurium (ATCC 14028) and subjected to dipping treatment (22 2 C for 10 min) with SlALcEW and StAEW. Shelf-life study was conducted for inoculated and noninoculated meat samples treated with SlALcEW and StAEW at storage temperatures of 5, 15, and 25 C. Dipping treatment with electrolyzed water significantly (P < 0.05) reduced the background and inoculated pathogens compared to untreated controls. The reduction of 1.5 to 2.3 log CFU/g was achieved by SlALcEW and StAEW against background flora, L. monocytogenes and Salmonella Typhimurium. There was no significant difference (P > 0.05) between the SlALcEW and StAEW treatments efficacy. Comparing treated samples to untreated controls showed that SlALcEW and StAEW treatments extended the shelf life of chicken meat at different temperatures with marginal changes of sensory quality. Although SlALcEW and StAEW treatments showed similar antimicrobial effects but SlALcEW was more beneficial in practical application for its semineutral pH and low chlorine content.



Journal Cover

Microbe(s): Salmonella enteritidis


The efficiency of slightly acidic electrolyzed water (SAEW) at different temperatures (4, 20 and 45 C) for inactivation of Salmonella enteritidis and it on the surface of shell eggs was evaluated. The bactericidal activity of SAEW, sodium hypochlorite solution (NaClO) and acidic electrolyzed water (AEW) to inactivate S. enteritidis was also compared. SAEW with a pH value of 6.0-6.5 used was generated by the electrolysis of a dilute hydrochloric acid (2.4 mM) in a chamber without a membrane. Although the pH value of SAEW was greatly higher than that of AEW (pH2.6-2.7), SAEW had a comparative powerful bactericidal activity at the same available chlorine concentrations. The efficiency of SAEW for inactivation of pure S. enteritidis cultures increased with increasing the available chlorine concentration and treatment time at the three different temperatures. The S. enteritidis counts decreased to less than 1.0 log10 CFU/ml at available chlorine of 2 mg/l and 100% inactivation (reduction of 8.2 log10 CFU/ml) was resulted in using SAEW with available chlorine more than 4 mg/l at 4, 20 and 45 C after 2 min treatment, whereas no reduction was observed in the control samples. Moreover, SAEW was also effective for inactivating the S. enteritidis inoculated on the surface of shell eggs. A reduction of 6.5 log10 CFU/g of S. enteritidis on shell eggs was achieved by SAEW containing 15 mg/l available chlorine for 3 min, but only a reduction of 0.9-1.2 log10 CFU/g for the control samples. No survival of S. enteritidis was recovered in waste wash SAEW after treatment. The findings of this study indicate that SAEW may be a promising disinfectant agent for the shell egg washing processing without environmental pollution.



Journal Cover

Microbe(s): Fungi, Pseudomonas spp., Candida spp.


The effect of acidic, electrolyzed oxidizing (EO) water and chlorinated water on the spoilage microflora of processed broiler carcasses was examined. Carcasses were sprayed for 5 s at 80 psi with tap, chlorinated, or EO water in an inside-outside bird washer. Treated carcasses were then stored at 4 C for 0, 3, 7, or 14 d, and the microbial flora of the carcasses was sampled using the whole-carcass rinse procedure. Populations of psychrotrophic bacteria and yeasts in the carcass rinsates were enumerated. Results indicated that immediately after spraying the carcasses, significantly fewer psychrotrophic bacteria were recovered from carcasses sprayed with chlorinated or EO water than from carcasses sprayed with tap water. Furthermore, significantly fewer yeasts were recovered from carcasses sprayed with EO water than from carcasses sprayed with tap or chlorinated water. The population of psychrotrophic bacteria and yeasts increased on all carcasses during refrigerated storage. However, after 14 d of storage, significantly fewer psychrotrophic bacteria and yeasts were recovered from carcasses sprayed with EO water than from carcasses sprayed with tap or chlorinated water, and significantly fewer microorganisms were recovered from carcasses sprayed with chlorinated water than from carcasses sprayed with tap water. Pseudomonas spp. and Candida spp. were the primary microbial isolates recovered from the broiler carcasses. Findings from the present study indicate that EO water can effectively be used in inside-outside bird washers to decrease the population of spoilage bacteria and yeasts on processed broiler carcasses.



Journal Cover

Microbe(s): Escherichia coli, Campylobacter, Salmonella


A study was conducted to investigate the effects of spray washing broiler carcasses with acidified electrolyzed oxidizing water (EO) or sodium hypochlorite (HOCl) solutions for 5, 10, or 15 s. Commercial broiler carcasses were contaminated with 0.1 g of broiler cecal contents inoculated with 105 cells of Campylobacter and 105 cells of nalidixic acid-resistant Salmonella. Numbers of bacteria recovered from unwashed control carcasses were 6.7, 5.9, 6.3, and 3.9 log10 cfu/mL for total aerobic bacteria, Escherichia coli, Campylobacter, and Salmonella, respectively. Washing in either EO (50 mg/L of sodium hypochlorite, pH 2.4, oxidation reduction potential of 1,180 mV) or HOCl (50 mg/L of sodium hypochlorite, pH 8.0) significantly reduced the levels of bacteria recovered from carcasses (P < 0.05). Carcasses washed with EO had slightly lower levels of total aerobic bacteria (0.3 log10 cfu/mL) and E. coli (0.2 log10 cfu/mL) than HOCl-treated carcasses; however, populations of Campylobacter and Salmonella were comparable after washing in either solution. Increasing the carcass washing time from 5 to 10 s lowered the levels of total aerobic bacteria (6.1 vs. 5.8 log10 cfu/mL), E. coli (4.6 vs. 4.1 log10 cfu/mL), Campylobacter (5.2 vs. 4.2 log10 cfu/mL), and Salmonella (2.0 vs. 1.2 log10 cfu/mL), but no further microbiological reductions occurred when washing time was extended from 10 to 15 s. Data from the present study show that washing poultry carcasses with EO is slightly better (total aerobic bacteria and E. coli) or equivalent to (Campylobacter and Salmonella) washing with HOCl. Washing broiler carcasses for a period equivalent to 2 inside-outside bird washers (10 s) provided greater reductions in carcass bacterial populations than periods simulating 1 (5 s) or 3 inside-outside bird washers (15 s).



Journal Cover

Microbe(s): Total Microbial Count, Total Aerobic Bacteria, Coliforms, Escherichia coli


The effectiveness of electrolyzed oxidizing anode (EOA) water (oxidation-reduction potential, 1,120 mV; pH 2.0) as a sanitizer for use in abattoirs was compared with the iodophor (IOD) Mikroklene (25 ppm), a sanitizer approved for use by regulatory authorities in Canada and the United States. A total of 240 swab (100 cm2) samples were obtained from 4 sites on the kill floor and 16 sites in the secondary processing areas, during two visits within a 4-week period to each of three meat packing plants, processing < or =50 animals per week. Swabs were obtained 12 h after the application of IOD and EOA and were analyzed for the presence of total aerobic bacteria, total coliforms, and total Escherichia coli. Total aerobic bacteria (log CFU/ 100 cm2) recovered from the 20 sample sites were lower (P < 0.0001) in EOA as compared with IOD (2.94 +/- 0.12 versus 3.75 +/- 0.12, respectively). Plant A was 1.5 times more likely (P < 0.0001) to have a sampling site positive for the presence of coliforms and E. coli than plants B and C. There was no difference (P > 0.05) between treatment IOD or EOA in the likelihood of obtaining a positive sample for the presence of total coliforms or E. coli among the three plants. When the kill floor and secondary processing areas are compared, the likelihood of obtaining a sample positive for coliforms or E. coli was similar (P > or = 0.05). Results indicate that EOA was more effective than IOD in reducing populations of total aerobic bacteria on equipment surfaces in the three meat packing plants studied. Because the likelihood of obtaining a positive sample for coliforms or E. coli in EOA as compared with IOD was similar, EOA may be a suitable alternative or complement to IOD as a sanitizer in small- to medium-sized abattoirs. Additional research is required to further evaluate the effectiveness of EOA to sanitize processing equipment on the basis of subsequent isolation of aerobes, coliforms, and E. coli from meat products.



Journal Cover

Microbe(s): Listeria monocytogenes


The ability of electrolyzed (EO) water to inactivate Listeria monocytogenes in suspension and biofilms on stainless steel in the presence of organic matter (sterile filtered chicken serum) was investigated. A five-strain mixture of L. monocytogenes was treated with deionized, alkaline EO, and acidic EO water containing chicken serum (0, 5, and 10 ml/liter) for 1 and 5 min. Coupons containing L. monocytogenes biofilms were also overlaid with chicken serum (0, 2.5, 5.0, and 7.5 ml/liter) and then treated with deionized water, alkaline EO water, acidic EO water, alkaline EO water followed by acidic EO water, and a sodium hypochlorite solution for 30 and 60 s. Chicken serum decreased the oxidation-reduction potential and chlorine concentration of acidic EO water but did not significantly affect its pH. In the absence of serum, acidic EO water containing chlorine at a concentration of 44 mg/liter produced a > 6-log reduction in L. monocytogenes in suspension, but its bactericidal activity decreased with increasing serum concentration. Acidic EO water and acidified sodium hypochlorite solution inactivated L. monocytogenes biofilms to similar levels, and their bactericidal effect decreased with increasing serum concentration and increased with increasing time of exposure. The sequential 30-s treatment of alkaline EO water followed by acidic EO water produced 4- to 5-log reductions in L. monocytogenes biofilms, even in the presence of organic matter.



Journal Cover

Microbe(s): Salmonella Enteritidis, Listeria monocytogenes


The efficacy of acidic electrolyzed (EO) water produced at three levels of total available chlorine (16, 41, and 77 mg/liter) and chlorinated water with 45 and 200 mg/liter of residual chlorine was investigated for inactivating Salmonella Enteritidis and Listeria monocytogenes on shell eggs. An increasing reduction in Listeria population was observed with increasing chlorine concentration from 16 to 77 mg/liter and treatment time from 1 to 5 min, resulting in a maximal reduction of 3.70 log CFU per shell egg compared with a deionized water wash for 5 min. There was no significant difference in antibacterial activities against Salmonella and Listeria at the same treatment time between 45 mg/liter of chlorinated water and 14 A acidic EO water treatment (P 0.05). Chlorinated water (200 mg/liter) wash for 3 and 5 min was the most effective treatment; it reduced mean populations of Listeria and Salmonella on inoculated eggs by 4.89 and 3.83 log CFU/shell egg, respectively. However, reductions (log CFU/shell egg) of Listeria (4.39) and Salmonella (3.66) by 1 min alkaline EO water treatment followed by another 1 min of 14 A acidic EO water (41 mg/liter chlorine) treatment had a similar reduction to the 1 min 200 mg/liter chlorinated water treatment for Listeria (4.01) and Salmonella (3.81). This study demonstrated that a combination of alkaline and acidic EO water wash is equivalent to 200 mg/liter of chlorinated water wash for reducing populations of Salmonella Enteritidis and L. monocytogenes on shell eggs.



Journal Cover

Microbe(s): Campylobacter jejuni


This study was undertaken to investigate the efficacy of alkaline and acidic electrolyzed (EO) water in preventing and removing fecal contaminants and killing Campylobacter jejuni on poultry carcasses under simulated industrial processing conditions. New York dressed and defeathered chicken carcasses spot-inoculated with cecal material or C. jejuni were subjected to spraying treatment with alkaline EO or 10% trisodium phosphate (TSP) water or combinations of spraying and immersion treatments with acidic EO and chlorinated water, respectively. Prespraying chicken carcasses with alkaline EO water significantly lowered cecal material attachment scores (3.77) than tap water (4.07) and 10% TSP (4.08) upon treatment of the dorsal area. Combinations of pre- and postspraying were significantly more effective than postspraying only, especially when using alkaline EO water in removing fecal materials on the surface of chicken carcasses. Although treatment by immersion only in EO and chlorinated water significantly reduced the initial population (4.92 log10 cfu/g) of C. jejuni by 2.33 and 2.05 log10 cfu/g, respectively, combinations of spraying and immersion treatment did not improve the bactericidal effect of sanitizers. The results indicated that alkaline EO water might provide an alternative to TSP in preventing attachment and removal of feces on the surface of chicken carcasses. The results also suggested that chicken carcasses containing pathogenic microorganisms may contribute to the cross-contamination of whole batches of chickens during processing in the chiller tank and afterward.



Journal Cover

Microbe(s): Salmonella enteritidis, Escherichia coli


During commercial processing, eggs are washed in an alkaline detergent and then rinsed with chlorine to reduce dirt, debris, and microorganism levels. The alkaline and acidic fractions of electrolyzed oxidizing (EO) water have the ability to fit into the 2-step commercial egg washing process easily if proven to be effective. Therefore, the efficacy of EO water to decontaminate Salmonella Enteritidis and Escherichia coli K12 on artificially inoculated shell eggs was investigated. For the in vitro study, eggs were soaked in alkaline EO water followed by soaking in acidic EO water at various temperatures and times. Treated eggs showed a reduction in population between > or = 0.6 to > or =2.6 log10 cfu/g of shell for S. Enteritidis and > or =0.9 and > or =2.6 log10 for E. coli K12. Log10 reductions of 1.7 and 2.0 for S. Enteritidis and E. coli K12, respectively, were observed for typical commercial detergent-sanitizer treatments, whereas log10 reductions of > or =2.1 and > or =2.3 for S. Enteritidis and E. coli K12, respectively, were achieved using the EO water treatment. For the pilot-scale study, both fractions of EO water were compared with the detergent-sanitizer treatment using E. coli K12. Log10 reductions of > or = 2.98 and > or = 2.91 were found using the EO water treatment and the detergent-sanitizer treatment, respectively. The effects of 2 treatments on egg quality were investigated. EO water and the detergent-sanitizer treatments did not significantly affect albumen height or eggshell strength however, there were significant affects on cuticle presence. These results indicate that EO water has the potential to be used as a sanitizing agent for the egg washing process.



Journal Cover

Microbe(s): Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes, Escherichia coli


Research was conducted to compare the effectiveness of electrolyzed oxidative (EO) water applied using an electrostatic spraying system (ESS) for killing populations of bacteria that are of concern to the poultry industry. Populations of pathogenic bacteria (Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes), and the indicator bacterium Escherichia coli were applied to eggs and allowed to attach for 1 h. EO water completely eliminated all Salmonella typhimurium on 3, 7, 1, and 8 out of 15 eggs in Repetitions (Rep) 1, 2, 3, and 4, respectively, even when very high inoculations were used. EO water completely eliminated all Staphylococcus aureus on 12, 11, 12, and 11 out of 15 eggs in Rep 1, 2, 3, and 4, respectively. EO water completely eliminated all Listeria monocytogenes on 8, 13, 12, and 14 out of 15 eggs in Reps 1, 2, 3, and 4, respectively. EO water completely eliminated all Escherichia coli on 9, 11, 15, and 11 out of 15 eggs in Reps 1, 2, 3, and 4, respectively. Even when very high concentrations of bacteria were inoculated onto eggs (many times higher than would be encountered in industrial situations), EO water was found to be effective when used in conjunction with electrostatic spraying for eliminating pathogenic and indicator populations of bacteria from hatching eggs.



Journal Cover

Microbe(s): Total Microbial Count


The use of electrolyzed water for washing and sanitizing eggshells and an egg washer was evaluated for its effectiveness at a Grade & Packing Center adjacent to a poultry farm for a period of nine months. The test results indicate improvement in sanitation control. Dissolving yolks of broken eggs with electrolyzed alkaline water followed by sanitizing with electrolyzed acidic water produced favorable effects. Also, the use of electrolyzed water has an advantage in that it simplifies the conventional washing and sanitizing process and motivates operators to employ the process more frequently. This sense developed in operators may be a significant factor in the improvement of sanitation control.



Journal Cover

Microbe(s): Campylobacter jejuni


The effectiveness of electrolyzed (EO) water for killing Campylobacter jejuni on poultry was evaluated. Complete inactivation of C. jejuni in pure culture occurred within 10 s after exposure to EO or chlorinated water, both of which contained 50 mg/l of residual chlorine. A strong bactericidal activity was also observed on the diluted EO water (containing 25 mg/l of residual chlorine) and the mean population of C. jejuni was reduced to less than 10 CFU/ml (detected only by enrichment for 48 h) after 10-s treatment. The diluted chlorine water (25 mg/l residual chlorine) was less effective than the diluted EO water for inactivation of C. jejuni. EO water was further evaluated for its effectiveness in reducing C. jejuni on chicken during washing. EO water treatment was equally effective as chlorinated water and both achieved reduction of C. jejuni by about 3 log10 CFU/g on chicken, whereas deionized water (control) treatment resulted in only 1 log10 CFU/g reduction. No viable cells of C. jejuni were recovered in EO and chlorinated water after washing treatment, whereas high populations of C. jejuni (4 log10 CFU/ml) were recovered in the wash solution after the control treatment. Our study demonstrated that EO water was very effective not only in reducing the populations of C. jejuni on chicken, but also could prevent cross-contamination of processing environments.



Journal Cover

Microbe(s): Salmonella spp.


Foodborne pathogens in cell suspensions or attached to surfaces can be reduced by electrolyzed oxidizing (EO) water; however, the use of EO water against pathogens associated with poultry has not been explored. In this study, acidic EO water [EO-A; pH 2.6, chlorine (CL) 20 to 50 ppm, and oxidation-reduction potential (ORP) of 1,150 mV], basic EO water (EO-B; pH 11.6, ORP of -795 mV), CL, ozonated water (OZ), acetic acid (AA), or trisodium phosphate (TSP) was applied to broiler carcasses inoculated with Salmonella Typhimurium (ST) and submerged (4 C, 45 min), spray-washed (85 psi, 25 C, 15 s), or subjected to multiple interventions (EO-B spray, immersed in EO-A; AA or TSP spray, immersed in CL). Remaining bacterial populations were determined and compared at Day 0 and 7 of aerobic, refrigerated storage. At Day 0, submersion in TSP and AA reduced ST 1.41 log10, whereas EO-A water reduced ST approximately 0.86 log10. After 7 d of storage, EO-A water, OZ, TSP, and AA reduced ST, with detection only after selective enrichment. Spray-washing treatments with any of the compounds did not reduce ST at Day 0. After 7 d of storage, TSP, AA, and EO-A water reduced ST 2.17, 2.31, and 1.06 log10, respectively. ST was reduced 2.11 log10 immediately following the multiple interventions, 3.81 log10 after 7 d of storage. Although effective against ST, TSP and AA are costly and adversely affect the environment. This study demonstrates that EO water can reduce ST on poultry surfaces following extended refrigerated storage.